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We formulate the problem of probabilistic predictions of global failure in the simplest possible model based
on site percolation and on one of the simplest models of time-dependent rupture, a hierarchical fiber bundle
model. We show that conditioning the predictions on the knowledge of the current degree of damage �occu-
pancy density p or number and size of cracks� and on some information on the largest cluster improves
significantly the prediction accuracy, in particular by allowing one to identify those realizations which have
anomalously low or large clusters �cracks�. We quantify the prediction gains using two measures, the relative
specific information gain �which is the variation of entropy obtained by adding new information� and the root
mean square of the prediction errors over a large ensemble of realizations. The bulk of our simulations have
been obtained with the two-dimensional site percolation model on a lattice of size L�L=20�20 and hold true
for other lattice sizes. For the hierarchical fiber bundle model, conditioning the measures of damage on the
information of the location and size of the largest crack extends significantly the critical region and the
prediction skills. These examples illustrate how ongoing damage can be used as a revelation of both the
realization-dependent preexisting heterogeneity and the damage scenario undertaken by each specific sample.
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I. INTRODUCTION

Despite the large amount of experimental data and the
considerable effort that has been undertaken by material sci-
entists �1�, there is no comprehensive understanding of rup-
ture phenomena but only a partial classification in restricted
and relatively simple situations. This lack of fundamental
understanding is reflected in the absence of reliable predic-
tion methods for rupture, based on a suitable monitoring of
the stressed system. The difficulties stem from the complex
interplay between heterogeneities and modes of damage and
the possible existence of a hierarchy of characteristic scales
�static and dynamic� �2�.

Here, we exploit this complexity to propose a minimal
procedure �minimal in the sense of no additional or extrane-
ous hypothesis, but simple exploitation of available informa-
tion� to extract an optimum failure prediction based on the
knowledge of present survival state. We believe this proce-
dure to be relevant to most failure phenomena.

The idea underlying this paper was inspired by the
method of “reverse tracing of precursors” �RTP� introduced
in Refs. �3,4� as a method of earthquake prediction based on
seismicity patterns. In a nutshell, the RTP method consists
first in delineating a spatial domain S�t� by using a space-
time correlation analysis of past seismicity up to the present
time t and then in constructing precursory diagnostics based

on past seismicity restricted to this spatial domain S�t�
�called chains in Refs. �3,4��. In Refs. �3,4�, the precursory
functions used to issue a prediction are based on previously
documented seismic anomalies �see �5� and references
therein� and will not be our concern. Rather, the question we
are asking is, what could justify the innovation presented in
Refs. �3,4� to constrain the construction of precursory diag-
nostics to some special spatial domains recognized from
some spatiotemporal correlation analysis of past seismicity?
Indeed, Refs. �3,4� do not provide an explanation on why
their method should work and what could be its underlying
physical mechanism�s�, since their approach is based on the
pragmatic mathematical pattern recognition method initiated
long ago by Gelfand et al. �6�. Our paper is the first one in a
series which shows how the idea behind RTP can be actually
justified on physical grounds and used for improving previ-
ous prediction methods for earthquakes or material ruptures.

We first present the problem and explore its implications
for the percolation model and then test the robustness of the
results and extend them to a time-dependent hierarchical fi-
ber bundle model.

II. FORMULATION OF THE PERCOLATION MODEL

As a first step, we propose to formulate the problem with
perhaps the simplest model of heterogenous media undergo-
ing a transition, the site percolation model �7–9�. By doing
so, we aim at capturing the essence of the idea.

Consider a two-dimensional lattice of L�L sites which
are initially empty. We then fill one by one the sites at ran-
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dom positions and denote by p the corresponding fraction of
occupied sites. Any given realization CL will be characterized
by some threshold pc�CL� at which the occupied sites form a
cluster which barely percolates from one side of the system
to its opposite side. It is known that, for L→�, pc�CL� be-
comes independent of the specific realization of the system
and converges to a unique number pc

�=0.592 746 0
±0.000 000 5 �10�. It is also well known that, for finite L,
pc�CL� is a random number distributed according to a prob-
ability density function �PDF� P�pc� centered on a value
shifted downwards from pc

� by an amount and with a width
which are both proportional to 1/L1/�, where �=4/3 is the
universal exponent �in two dimensions� of the correlation
length, defined, roughly speaking, as the typical size of the
largest cluster. The shift and width of the PDF P�pc� are
characteristic of the so-called finite-size scaling of the critical
percolation transition �11�.

For our purpose which is to relate with the prediction of a
rupture or an earthquake, we interpret p as the running time,
which is also the fraction of the lattice which is damaged. We
thus envision the two-dimensional lattice as being progres-
sively damaged at a rate of one site failing per unit time. The
percolation threshold pc�CL� then corresponds to the time
when there is a connected path of damaged sites running
from one side to the other, such that the system is decon-
nected into at least two pieces, a diagnostic of rupture.
Hence, the progressive filling of the sites in the percolation
problem described above corresponds to the progressive
damage of an initially pristine system.

Roux et al. �12� have shown that rupture is equivalent to
percolation in the limit of very large disorder and, by exten-
sion, rupture processes can be considered as nothing but
�complicated� correlated percolation problems �2,13�. Since,
by definition, the addition of new sites in percolation model
has no interaction, correlation, or memory of the past, the
formulation of the idea inspired by the RTP method in this
context necessarily reduces the scope of the approach. This is
because the information present in real rupture and earth-
quake cases based on correlation and memory in the time
domain has no bearing in the prediction of the percolation
threshold pc�CL�. In subsequent papers, we will investigate
different examples of “correlated” percolation—namely,
models of rupture—in which time-dependent precursors can
be coupled with the spatial organization of damage. The hi-
erarchical time-dependent fiber-bundle model analyzed in
Sec. V provides a first example of this class of processes.

III. PREDICTIONS OF THE PERCOLATION
THRESHOLD

A. Hierarchy of prediction levels

Suppose that a given realization in a system of size L
�L is at the cumulative fraction p of damaged sites. What
level of prediction is possible for its percolation threshold
pc�CL�? We now describe different levels of prediction of the
percolation threshold based on increasing the available infor-
mation.

�i� The first level of prediction is what we call the uncon-
ditional prediction, which amounts to not even use the

knowledge that the system has the cumulative fraction p of
damaged sites. It corresponds to the statistical distribution of
pc�CL�. This is the information available at the beginning of a
simulation.

�ii� The second level of prediction is to use the fact that
we want to predict pc�CL� conditioned on the fact that we
know that the system has reached the cumulative fraction p
of damaged sites. It is obvious that this improves on the first
level: for instance, if, by luck, p happens to be already quite
large �say larger than the average of pc�CL�� and the system is
still not percolating, then we know for sure that the value of
pc�CL� for this system will be larger than p.

�iii� The third level of prediction incorporates additional
information on how the damage over the pL2 sites is orga-
nized. For instance, typical experiments of rupture have ac-
cess to the spatial organization of acoustic emissions, which
provide clues on the localization of damage. In this spirit,
suppose that we can measure the fraction of damaged sites
belonging to the largest cluster at p or the size along the
horizontal and vertical directions of the largest cluster. Then,
this should give us some additional information to improve
on the prediction. Indeed, if we measure for two given real-
izations that the largest cluster has a horizontal size close to
L in the first one and L /2 in the second one for a given p, we
can guess that the first system will in general percolate
sooner �for a smaller pc�CL�� than the second system.

�iv� One can imagine many other levels of prediction us-
ing all kinds of additional information, such as the statistics
of the clusters, their shape, positions, etc.

�v� The last ultimate level of prediction is to use all the
information on the exact locations of all damaged sites and
condition the prediction of pc�CL� on this knowledge.

In the following, we implement the first three levels of
predictions and show that we obtain substantial gains at the
third level. This is perhaps not surprising, but this provides a
quantitative demonstration on how prediction can be im-
proved by using information on the spatial organization of
damage. Additionally, it tells us what are the limits of pre-
dictability, given each level of information.

B. First and second prediction levels

The first prediction level described in Sec. III A amounts
to constructing the standard probability distribution function
PL�pc� of the percolation thresholds, shown by the circles in
Fig. 1 for L=20. We have used 50�106 realizations to get a
good statistics. Such distribution is the standard tool for the
study of finite-size scaling �11�. For our purpose, it quantifies
the range of predictions for the percolation thresholds pc�CL�
in the form of a probabilistic forecast.

Crosses, dots, and squares show the second prediction
level, corresponding to the PDF’s PL�pc � p� conditioned on
those systems which have not percolated for a fixed occupa-
tion density p=0.50,0.53 and p=0.55, respectively. Since for
L=20, the unconditional PDF PL�pc� is quite broad with as
many as 40% of the realizations percolating with pc�CL�
�0.55, the condition that pc�CL� has to be larger than 0.55
transforms PL�pc� into a significantly more peaked condi-
tional PDF PL�pc � p=0.55�. In the language of the prediction
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problem, the PDF’s PL�pc � p� shown with the crosses, dots,
and squares provide the probabilistic forecasts for rupture,
available at “time” p and conditioned only on the knowledge
of p.

C. Third prediction level

We implement the third prediction level described in Sec.
III A in two ways. Let us call p��p� the fraction of sites
belonging to the largest cluster and ��p� the largest of the
linear size projected on the x and y axes of the largest cluster
within the system when the occupancy density is p.

Figure 2 presents the PDF PL�pc � p , p�� conditioned on
both p and p�=6%, for different values of p �crosses, p=0.4;
dots, p=0.45; squares, p=0.5�. For comparison, the uncon-
ditional distribution of the first prediction level is also shown
with open circles. The gradual shift of the PDF PL�pc � p , p��
to larger values of pc for increasing p shows that the mea-
surement of the largest cluster size which is fixed for a given
p in the percolating process makes it more likely to see per-
colation occurring at “late times” �i.e., for large pc’s� the
larger the value of p. Intuitively, this just means that if one
observes in two different systems for different values of p
the same mass of the largest cluster, the system with the
largest value of p is more likely to percolate at a later time.
The shift and narrowing of the PDF’s are clear illustration of
the information one can gain by conditioning on relevant
variables.

Figure 3 presents the PDF PL�pc � p ,�� conditioned on
both p and �=0.2L for different values of p �dots, p=0.35;
squares, p=0.4�. For comparison, the unconditional distribu-
tion of the first prediction level is also shown with open

circles. The results are similar to those presented in Fig. 2,
with a gradual shift and narrowing of the conditional PDF’s
to larger values of pc for increasing p. Using the largest
projected cluster should give even more information on the
final value of pc for a given system, since, e.g., two systems
with the same p and p�, but one having a more elongated
largest cluster than the other, should help the former reach
the percolation threshold sooner on average.

Figure 4 shows the PDF PL�pc � p ,�� for a fixed p=40%
and different values of �: � /L=0.04 �crosses�, � /L=0.06
�dots�, � /L=0.08 �squares�, and � /L=0.1 �triangles�. The

FIG. 1. Circles: standard probability distribution function �PDF�
PL�pc� as a function of the percolation threshold pc �in percent� for
L=20. Crosses: conditional PDF PL�pc � p=0.5� conditioned on
those systems which have not percolated for a fixed occupation
density p=0.5. Dots: conditional PDF PL�pc � p=0.53� conditioned
on those systems which have not percolated for a fixed occupation
density p=0.53. Squares: conditional PDF PL�pc � p=0.55� condi-
tioned on those systems which have not percolated for a fixed oc-
cupation density p=0.55.

FIG. 2. PDF PL�pc � p , p�� as a function of pc �in percent� con-
ditioned on both p and p�=6%, where p� is the fraction of sites
belonging to the largest cluster, for different values of p �crosses,
p=0.4; dots, p=0.45; squares, p=0.5�. For comparison, the uncon-
ditional distribution of the first prediction level is also shown with
open circles.

FIG. 3. PDF PL�pc � p ,�� as a function of pc �in percent� condi-
tioned on both p and �=0.2L, where � is the largest of the linear
size projected on the x and y axes of the largest cluster within the
system, for different values of p �dots, p=0.35; squares, p=0.4�.
For comparison, the unconditional distribution of the first prediction
level is also shown with open circles.
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open circles represent the unconditional PDF PL�pc� for
comparison.

IV. MEASURES OF GOODNESS OF THE THIRD LEVEL
PREDICTIONS

A. Information gain

The standard measure of the improvement in the quality
of forecasts when going from the first to the third prediction
level is the information gain H−Hsc, where H is the uncon-
ditional entropy defined by

H = −� P�pc�ln�P�pc��dpc. �1�

We consider two possible conditional entropies Hsc�p , p��
and Hsc�p ,�� associated with the two conditional schemes of
the third level prediction discussed in the previous section:

Hsc�p,p� or �� = −� P�pc�p,p� or ��ln�P�pc�p,p� or ��� .

�2�

The relative “specific information gain” I �p, p� or �� is then
defined by

I�p,p� or �� �
1

H
�H − Hsc�p, p�, or ��� . �3�

Figure 5 shows I�p , p�� �panel �a�� and I�p ,�� �panel �b��
as a function of p for various values of p� and �. The relative
specific information gains I�p , p�� and I�p ,�� have qualita-
tively the same behavior, characterized by three regimes.

�i� For small values of p �the smaller p� or �, the smaller
the values of p for which this regime holds�, we observe
some information gain when adding the information on p� or
�. This information gain can be ascribed to the realizations

which initially �i.e., for small p� have an abnormal large
value of p� or � and therefore are likely to percolate before
the typical behavior. Knowledge of these anomalously large
p� or �, when they occur, gives an improvement for the pre-
diction of the percolation of these systems. Translated in the
context of the prediction of rupture, the information gain
shown in Fig. 5 for small p’s is based on the detection of
anomalous cracks or defects at an early stage. It is important
to stress that the information gain is not uniform over all
realizations: most realizations are not much more predictable
by adding the information on p� or � for small p’s; only those
which have anomalous defects can be better predicted. This
result is reasonable and retrieves the standard approach in
applications of mechanical engineering to the prediction of
rupture in which the major efforts are put in the detection of
possible initial flaws in the material or structure.

�ii� For intermediate values of p, the information gain
obtained by conditioning on p� or � is limited if not negative,
since for these values of p the imposed p� or � correspond to
“normal” values.

�iii� Finally, for the larger p’s, the information gain accel-
erates and become large since it becomes very unlikely to
observe systems with such small values of p� or �. Therefore,
knowledge that a given realization has an anomalously small
p� or � provides highly meaningful information that percola-
tion will require a much larger value of p than the current
value.

While the relative specific information gains I�p , p�� and
I�p ,�� have qualitatively the same behavior, the gain is much
larger for the latter compared with the former: this is because
the geometrical size of the larger cluster is much more rel-
evant for percolation than the total number of sites in the
large cluster.

B. rms of prediction errors

We now quantify the errors of the prediction of the real-
ization specific percolation threshold pc�CL� based on the

FIG. 4. Same as Fig. 3 for a fixed p=40% and different values
of �: � /L=0.04 �crosses�, � /L=0.06 �dots�, � /L=0.08 �squares�,
and � /L=0.1 �triangles�. The open circles represent the uncondi-
tional PDF PL�pc� for reference.

FIG. 5. Panel �a�: relative specific information gain I�p , p�� as a
function of p �in percent� for various values of p�

=2% ,4% ,6% ,8% ,10% from left to right. Panel �b�: relative spe-
cific information gain I�p ,�� as a function of p for various values of
� /L=10% ,20% ,30% ,40% ,50% ,60% from left to right.
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conditioning on p and p� or �. We imagine a situation mim-
icking a real-life situation in which one monitors the cumu-
lative level of damage p of a sample as well as the largest
crack in the system. Conditioned on the knowledge of p and
p� or � for a given realization, how well can we predict the
rupture time pc�CL� of the sample?

In order to address this question, we have first made 50
�106 realizations of system sizes L=20 to obtain a good
estimate of the conditional distributions P�pc � p , p�� and
P�pc � p ,��, which will be our prediction tools. Having
sampled these conditional distributions, we then constructed
additional realizations that we monitored to measure their
p��p� and ��p� as a function of p. For a given realization at a
given p, knowing the corresponding specific p��p�, our pre-
diction is nothing but P(pc � p , p��p�). Similarly, for a given
realization at a given p, knowing the corresponding specific
��p�, our prediction is nothing but P(pc � p ,��p�). Note that
our forecasts are intrinsically probabilistic, by construction.
However, each probabilistic forecast can be translated into a
single predicted number pc

predicted�p�—for instance, the me-
dian of P(pc � p , p��p�) or P(pc � p ,��p�)—complemented with
an uncertainty given by some measure of the width of these
distributions �standard deviation or quantiles�.

In order to assess the quality of such predictions, we need
to construct statistics over ensembles of forecasts. In addi-
tion, we would like to study how the quality of the predic-
tions evolves with the degree of damage p, in particular to
test if we get advanced warning and how the prediction im-
proves or deteriorates as a function of p. Since, for each p,
we have two distributions of p� and � which move with p,
the amount of data to visualize is too large to remain com-
prehensible. We propose to focus on fixed quantiles q of the
distributions of p� and �—say, q=5% and q=95%—so that
we issue predictions based on the pairs p , p�

q�p� �and simi-
larly p ,�q�p�� where p�

q�p� ��q�p�� is the qth quantile of the
distribution of p� ��� for the cumulative damage p.

For such a prediction, we can assess its error by construct-
ing the rms �root mean square� of errors:

Q�p� � ��pc
predicted�p� − pc

true�2	1/2, �4�

where pc
true is the true value observed for the given system

and where pc
predicted�p� is our predicted value of pc for a given

system and for a given p and using a given quantile q of the
distribution of p� ��q� for the cumulative damage p. As our
prediction pc

predicted�p� for pc, we have used the median value
of the conditional cumulative distribution defined by

P�„pc
predicted�p, p�

q�p�, or �q�p�… = 1/2. �5�

Figure 6 shows Q�p ,�� for q=5%, q=50% and q=95%,
when using P(pc � p ,�q�p�) as the predictor, as a function of
p. The triangles correspond to q=5%, the dots to q=95%,
and the crosses to q=50%, while the circles show Q�p� ob-
tained using the conditioning only on p for comparison. The
corresponding figure when using P(pc � p , p��p�) as the pre-
dictor is very similar and is thus not shown. Figure 7 shows
the gain in rms Q�p�−Q�p ,�� when adding the information
on �. These figures show the result of an implementation
which mimics a real experiment of a material progressively

brought to failure: one would for a given time �that is, p�
measure the largest crack and, from the PDF’s documented
from earlier experiments, get an estimate of pc corresponding
to that p ,�. Notice that all three estimates in Fig. 6 coincide
for small p’s. The reason is of course that the PDF’s for small
p are very close to each other, whether the conditioning is on
� �corresponding to a small value of p� or just conditioned on
p itself.

These figures confirm the signicant gain in prediction ac-
curacy when conditioning the forecast on the q=5% and q

FIG. 6. rms Q�p , p�� �in percent� of the prediction errors defined
by Eq. �4� with Eq. �5�, for the quantiles q=5%, q=50% and q
=95% of the distribution of � at fixed p, when using P(pc � p ,�q�p�)
as the predictor, as a function of the damage parameter p �in per-
cent�. Triangle, q=5%; dots, q=95%; crosses, q=50%; circles,
Q�p� obtained using the conditioning only on p. This rms Q�p , p��
should be compared with the standard deviation equal to 4.66%
of the unconditional distribution of percolation thresholds, to illus-
trate the gain in prediction accuracy deriving from the added
information.

FIG. 7. Gain in rms Q�p�−Q�p ,�� when adding the information
on �, where Q�p ,�� is shown as the triangles �q=5% �, dots �q
=95% �, and crosses �q=50% � and Q�p� is shown in Fig. 6 with
circles.
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=95% quantiles of the distribution of � �p��. The q=5%
quantile selects those realizations such that their largest clus-
ter is so small that 95% of the realizations have a bigger
largest cluster. Conditioning on this information gives a sig-
nificant gain in the forecast, especially for advanced warn-
ings. The improvement deteriorates when p approaches the
average percolation threshold and even changes sign with a
worse quality for p larger than about 54%. We observe the
opposite trend when conditioning on the q=95% quantile of
the distribution of �, corresponding to those realizations
which have an anomalously big largest cluster so that only
5% of the realizations have a bigger largest cluster. In this
case, the prediction accuracy is improved above for p
�0.45.

V. HIERARCHICAL FIBER RUPTURE MODEL
WITH TIME DEPENDENCE

The principles underlying the results on the percolation
model presented above are of general validity. Our following
papers will investigate their application and extension to
other model systems and to different real systems including
concrete engineering systems �material failure, structural col-
lapse� and geophysical systems �earthquakes, landslides�.
However, it is worthwhile already to present preliminary re-
sults obtained on a more realistic �even still highly simpli-
fied� model of damage evolution and rupture, to illustrate our
point.

A. Definition of the hierarchical bundle model

The model describes the time evolution of damage lead-
ing to the culminating global failure of a bundle of fibers in
a creep experiment. The model has been studied in �14–16�.
Consider a hierarchical bundle of elastic fibers subjected to a
constant stress load 	 per fiber applied at time t=0. The
topology of the system is as follows. Each fiber is associated
with another fiber in a pair. Then, two neighboring pairs are
associated to each other, forming a pair of two pairs and so
on iteratively up in a sequence of levels, thus defining a
discrete hierarchical tree of local coordination 2. A system
containing n such levels has 2n fibers. This topology impacts
the dynamics of fiber rupture in the following way. When
one of the two fibers of a given pair fails, its stress load is
transferred instantaneously to the surviving fiber, such that
its load is doubled. When this fibers breaks, its load is trans-
ferred to the pair of fibers associated with it if this second
pair is still present. Otherwise, it is transferred to the pair of
two pairs linked at the next hierarchical level. The last ingre-
dient of the model is to specify how a fiber fails under a
given stress load history. Given some stress history s�t�� , t�

0, a fiber is assumed to break at some fixed random time,
where the probability that this random time takes a specific
value t is specified by its cumulative distribution function

P0�t� � �
0

t

p0�t��dt� = 1 − exp
− ��
0

t

�	�t����dt�� . �6�

This law captures the physics of stress corrosion and of fail-
ure due to stress-assisted thermal activation and progressive

damage. A system of 2n fibers is fully specified by attributing
to each fiber i=1, . . . ,2n at the beginning of the experiment a
fixed failure time ti taken from the distribution �6�. The fail-
ure time ti is by definition the time at which the fiber i would
have broken if the stress had stayed constant equal to the
initial value 	. But the fibers are coupled through the hierar-
chical load transfer rule defined above. As a consequence of
the hierarchical structure of the load transfers occurring at
each rupture, the stress applied to a given fiber may increase,
leading to a shortening of its lifetime.

Let us consider quantitatively the effect of the rupture of
one fiber at time t1 on the other fiber of its pair, which would
have broken at time t2 without this additional load transfer.
For a population of such pairs of fibers, the distribution of
the time-to-failure for the remaining fiber is obtained from
Eq. �6� by taking the stress equal to 	 up to t1 and equal to
2	 from t1 up to the second rupture, which now occurs at a
time t12� t2 itself function of t1 and t2:

P0�t12� = 1 − exp�− �	��t1 + 2��t12 − t1�� . �7�

Doing this calculation for the ensemble, the population of
fibers must be the same since the population is homogeneous
at this level and P0�t12� should therefore also be equal to
1−exp�−�	�t2�. Considering that t12 is a function of t2 and
identifying this expression with Eq. �7�, we rederive the fun-
damental result �14� that the time-to-failure of a fiber is
modified from its initial value t2 to a smaller failure time t12
by the influence of the other fiber which has failed at the
earlier time t1, according to

t12 = t1 + 2−��t2 − t1� . �8�

The inequality 2−��1 �for ��0� ensures that t1� t12� t2.
This corresponds to a genuine cooperative process as the
time-of-failure of the second fiber is decreased by the load
transfer from the first fiber. This remarkable result holds for
any realization of the stochastic process. Let us stress that
this result now applies not only at the level of individual
fibers but at all levels within the hierarchy: if t1 and t2 are the
lifetimes of two uncoupled bundles, then Eq. �8� describes
the effect of the rupture of the first bundle on the second one
which sees its load doubling at time t1. The relation �8� forms
the basis for analytical as well as numerical simulations. In
particular, an exact Monte Carlo calculation of the probabil-
ity distribution of failure times of this hierarchical system
indicates that the distribution of failure times for the whole
system is renormalized from P0�t� into a staircase �or jumps
from 0 to 1� at a well-defined nonzero critical time t*, as the
system size n tends to infinity, according to a generalized
central-limit theorem. It has also been shown theoretically
and numerically that the rate of fiber failures diverges �up to
finite-size effects� according to a power law �1/ �t*− t�p���

upon the approach to the global rupture time t* for ��1,
where p depends on � �15,16�. In our investigation below, we
take �=1 and �=2.

B. Third level prediction by conditioning the distribution
of lifetimes on the observation of the largest crack

We address the central question of this paper—namely,
how the revelation of information up to the present in the
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form of the partial knowledge of where and when fibers or
groups of fibers have broken may be exploited to bracket
better and better the realization-specific lifetime of a whole
given system.

In order to mimic a real-life situation, we consider a creep
experiment of our hierarchical fiber system such that, at time
0, a stress 	 is applied. We have no access to the specific
individual lifetimes of the individual constituting fibers, only
to their PDF p0�x�. At time passes, damage occurs—that is,
fibers break—thus revealing their initial lifetimes. The situ-
ation becomes of course complicated because of the interac-
tions between the fibers through the hierarchical stress load
defining the model, as the damage spreads accross the levels
of the hierarchy. In a real-life experiment, the damage would
be measured, for instance, by acoustic emissions, with both
time and space localization giving information on which fi-
bers have been broken and at what time.

Our goal here is to construct schemes that uses some in-
formation in space and time on the damage that occurred
until time t to form a better prediction for the rupture of the
next level of the hierarchy and for the whole system, in the
form of a PDF of lifetimes for the total system.

Figure 8 gives an illustration of the space-time evolution
of fiber damage for a system of 28=256 fibers. One can
observe a transition from initial random uncorrelated rup-
tures to a progressive organization with growth of “cracks”
and fusion between “cracks” associated with the acceleration
of damage up to the culmination global failure.

Now, suppose that we observe the evolution of such a
system from time 0 to some “present” time t, before com-
plete failure. Furthermore, suppose that our measurement is
imperfect and we do not have access to all the information
on the position and times of individual fiber failures. Let us
assume that we only know the size 2m of the largest crack �or
bundle� that has broken up to time t and some addition in-
formation on the fibers that broke within this crack at earlier

times. Is this knowledge useful? Figure 9 shows two differ-
ent measures of the cumulative number of broken fibers as a
function of t �in log-log scales� for a given realization. The
thick curve shows the unconditional cumulative number of
broken fibers. The thin curve shows, as a function of time t,
the cumulative number of broken fibers, which broke either
within the largest crack or within its complement in their pair
within the hierarchy. It is worth emphasizing that the time
evolution of both cumulative damage is knowable at each
time t. One can observe a striking difference, illustrating
vividly the impact of conditioning on some available partial
information on the ongoing damage, in order to improve the
prediction of the global failure: in the absence of condition-
ing �we count all broken fibers�, one can observe mostly a

FIG. 8. A specific realization of the space-time evolution of fiber
damage for a system of 28=256 fibers. The fibers are numbered
sequentially from 1 to 256 along the vertical axis. When a given
fiber i breaks at some time ti, a symbol  represents the spatial
position and failure time of this event.

FIG. 9. �Top� Two different measures of the cumulative number
of broken fibers as a function of time t for a given realization. The
thick curve shows the unconditional cumulative number of broken
fibers. The thin curve shows the �conditional� cumulative number of
broken fibers, which broke either within the largest crack identified
up to time t or within its complement in their pair within the hier-
archy. �Bottom� This graph shows the same two curves in log-log
scales with time t replaced by tc− t, where tc is the global time of
failure �only known at the end�. This log-log representation allows
us to visualize the power-law acceleration characterizing the final
critical regime before complete rupture, which is much more appar-
ent in the conditional cumulative number of broken fibers.
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linear increase and, only at the very end, can one see an
acceleration �which is a power law of 1/ �tc− t� as shown in
the inset�. In contrast, with the conditioning on the largest
crack and its complement, the power-law regime is extended
to very early time.

This result cannot be stressed sufficiently: in the past two
decades, material failure of heterogeneous materials has been
shown to belong to the class of dynamic critical phenomena
�see, for instance, the review in �2� and references therein�,
but the critical region is in general difficult to observe and
rather reduced in practical situations, thus hindering applica-
tions �this is why other techniques have been developed to
enhance the predictability by extending the region over
which critical information can be extracted �17,18��. What is
remarkable in Fig. 9 is that focusing on the largest current
crack and its neighborhood enhances the critical region tre-
mendously, thus offering a large potential for prediction at
early times.

Figure 10 is the equivalent for the hierarchical rupture

model of Fig. 6 previously constructed for the percolation
model. It shows the root mean square of the error or differ-
ence between predictions of the global rupture time and the
true realized one, for four distinct prediction schemes using
different conditioning. The improvement due to conditioning
is qualitatively similar but quantitatily stronger than for the
percolation model. This can be expected since the hierarchi-
cal bundle model has a dynamics in which the failure times
of fibers keep the memory of past ruptures: the failure of a
fiber is a function of all the previous ruptures that impacted
the load history on this fiber. In constrast, the rupture of a
bond in the percolation model is absolutely independent of
past damage �except for the fact that the rupture occurs on
remaining intact bonds, which is the mechanism underlying
the benefits of conditioning exploited in previous sections�.
The existence of memory is expected, and one can verify that
it improves the prediction performance: we conjecture more
generally that the larger the connectivity and interactions be-
tween elements, the better should be the improvement of
prediction quality with conditioning upon new information.

VI. CONCLUDING REMARKS

Our goal has been to demonstrate that one can predict the
percolation or rupture threshold, based on knowledge of the
amount of the current damage and on some information on
the largest cluster or crack in the system. This problem was
inspired by the idea of constructing better predictors for
earthquakes and ruptures based on a combination of the
space and time organization of damage. In this paper, which
is the first of a series, we have first considered perhaps the
worst and most difficult case for prediction—namely,
percolation—because in this model damage has no memory
of the past and no space-time correlation exists other than the
properties associated with the geometry of connectivity.
Similar results, not shown here, have been obtained for other
lattice sizes L=10 and L=30, 40, and 50.

Then, we have illustrated the robustness of the results
presented for the percolation model on one of the simplest
model of time-dependent rupture, a hierarchical fiber bundle
model. We have shown that conditioning the measures of
damage on the information of the location and size of the
largest crack extends significantly the critical region and the
prediction skills.

We will show in subsequent papers that the predictions
obtained in more realistic models of rupture which include
realistic correlation in the space-time organization of damage
and of cracks are significantly better, still. But our goal has
been reached here by showing that, in the worst possible and
most difficult case for prediction, we can achieve significant
gains by implementing the conditioning of some information
on the spatial organization of damage. In our practical imple-
mentation, we have considered the simplest information and
many other algorithms can be developed to improve on our
results. This will be developed in future papers.
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FIG. 10. Root mean square Q�t� of the error or difference be-
tween predictions made at time t of the global rupture time and the
true realized one as a function of time t for four distinct prediction
schemes using different conditioning, similarly to Fig. 6 previously
constructed for the percolation model. The system used here has 28

fibers and �=2. The � symbols correspond to a prediction at time t
of the failure time tc based solely on the information that the system
has not yet broken. For the other curves, we constructed the distri-
bution of failure times over 106 realizations for the different condi-
tioning. The triangles correspond to the rms Q�t� obtained by using
the 5% quantile of the distribution of failure times over these 106

simulations. Specifically, for a given system and at a given time t,
we measure the size � of the largest failed cluster and then read
from the distribution of failure times for the same time t and same
cluster size � the 5% quantile that we take as the prediction for the
failure time. Similarly for the crosses and dots corresponding, re-
spectively, to the 50% and 95% quantiles. Note that in our system
of 28 fibers, there are eight possible sizes of “cracks” larger than
1—namely, 2,4,8,…,128,256. These curves are obtained by averag-
ing over 105 realizations. These rms Q�p� for the five prediction
schemes should be compared with the standard deviation equal to
0.0311 of the unconditional distribution of failure times tc, to illus-
trate the gain in prediction accuracy deriving from the added infor-
mation obtained from conditioning.
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